Atrial Fibrillation (AF) is the most common cardiac arrhythmia affecting more than 6 million Europeans with a cost exceeding 1% of the EU health care system budget (13.5 billion annually). New treatment strategies and the progress achieved in research on AF mechanisms and substrate evaluation methods to date have not been commensurate with an equivalent development of the knowledge and technologies required to individually characterize each patient in search of the most efficient therapy.
PersonalizeAF addresses this challenge by delivering an innovative multinational, multi-sectorial, and multidisciplinary research and training programme in new technologies and novel strategies for individualized characterization of AF substrate to and increase treatments’ efficiency.
From the research point of view, PersonalizeAF will integrate data and knowledge from in-vitro, in silico, ex vivo and in vivo animal and human models to: 1) generate an individual description of the state of the atrial muscle identifying the disease mechanisms and characteristics; 2) understanding the potential effect that different therapies have on different atrial substrates; and 3) combining this information to generate a specific profile of the patient and the best therapy for each patient.
With this purpose, PersonalizeAF partnership aggregates relevant scientific staff from the academic and clinical world with highly specialised biomedical companies which will be involved in a high-level personalised training programme that will train a new generation of highly skilled professionals and guarantee ESRs and future PhD students outstanding Career Opportunities in the biomedical engineering, cardiology services and medical devices sectors. PersonalizeAF will disseminate results to a wide spectrum of stakeholders, create awareness in the general public about atrial fibrillation and encourage vocational careers among young students.
For further information, please click here: https://personalizeaf.net/
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No.860974. |